- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Xu, Xinxin (3)
-
Cai, Zeyu (1)
-
Cao, Yini (1)
-
Cha, Minjeong (1)
-
Colombari, Felippe Mariano (1)
-
Fang, Wanzhen (1)
-
Gao, Rui (1)
-
Guo, Xiao (1)
-
Guo, Yaozu (1)
-
Hao, Changlong (1)
-
Hao, Yi (1)
-
Haynes, Christy L. (1)
-
Hong, Eunji (1)
-
Huang, Sizhe (1)
-
Jang, Geunho (1)
-
Kotov, Nicholas A (1)
-
Kuang, Hua (1)
-
Kumar, Prashant (1)
-
Liu, Ye (1)
-
Ma, Chuanxin (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Gao, Rui; Xu, Xinxin; Kumar, Prashant; Liu, Ye; Zhang, Hongyu; Guo, Xiao; Sun, Maozhong; Colombari, Felippe Mariano; de_Moura, André F; Hao, Changlong; et al (, Proceedings of the National Academy of Sciences)The incessant mutations of viruses, variable immune responses, and likely emergence of new viral threats necessitate multiple approaches to novel antiviral therapeutics. Furthermore, the new antiviral agents should have broad-spectrum activity and be environmentally stable. Here, we show that biocompatible tapered CuS nanoparticles (NPs) efficiently agglutinate coronaviruses with binding affinity dependent on the chirality of surface ligands and particle shape.L-penicillamine-stabilized NPs with left-handed curved apexes display half-maximal inhibitory concentrations (IC50) as low as 0.66 pM (1.4 ng/mL) and 0.57 pM (1.2 ng/mL) for pseudo-type SARS-CoV-2 viruses and wild-type Wuhan-1 SARS-CoV-2 viruses, respectively, which are about 1,100 times lower than those for antibodies (0.73 nM). Benefiting from strong NPs–protein interactions, the same particles are also effective against other strains of coronaviruses, such as HCoV-HKU1, HCoV-OC43, HCoV-NL63, and SARS-CoV-2 Omicron variants with IC50values below 10 pM (21.8 ng/mL). Considering rapid response to outbreaks, exposure to elevated temperatures causes no change in the antiviral activity of NPs while antibodies are completely deactivated. Testing in mice indicates that the chirality-optimized NPs can serve as thermally stable analogs of antiviral biologics complementing the current spectrum of treatments.more » « less
-
Xu, Xinxin; Guo, Yaozu; Hao, Yi; Cai, Zeyu; Cao, Yini; Fang, Wanzhen; Zhao, Bangyin; Haynes, Christy L.; White, Jason C.; Ma, Chuanxin (, Modern Agriculture)Abstract Although silicon-based nanomaterials (Si-based NMs) can promote crop yield and alleviate biotic and abiotic stress, the underlying performance mechanisms are unknown. In the present study, the effect of the root application of Si-based NMs on the physiological responses of cherry radish (Raphanus sativus L.) was evaluated in a life cycle experiment. Root exposure to 0.1% (w/w) Si-based NMs significantly increased total fresh weight, total chlorophyll and carotenoids by 36.0%, 14.2% and 18.7%, respectively, relative to untreated controls. The nutritional content of the edible tissue was significantly enhanced, with an increase of 23.7% in reducing sugar, 24.8% in total sugar, and 232.7% in proteins; in addition, a number of nutritional elements (Cu, Mn, Fe, Zn, K, Ca, and P) were increased. Si-based NMs exposure positively altered the phytohormone network and decreased abscisic acid content, both of which promoted radish fresh weight. LC-MS-based metabolomic analysis shows that Si-based NMs increased the contents of most carbohydrates (e.g., α-D-glucose, acetylgalactosamine, lactose, fructose, etc.) and amino acids (e.g., asparagine, glutamic acid, glutamine, valine, arginine, etc.), subsequently improving overall nutritional values. Overall, nanoscale Si-based agrochemicals have significant potential as a novel strategy for the biofortification of vegetable crops in sustainable nano-enabled agriculture.more » « less
An official website of the United States government
